Web Content

The SKA Observatory

Discover the intergovernmental organization in charge of SKA construction and operations

Coordination

Since 2011, the IAA-CSIC coordinates the Spanish scientific and technological participation in the SKA

Science

Decades of unique experience and expertise in centimeter radiointerferometry and multi-frequency collaborations.

Construction and Design

Discover the main technological developments and participation in construction at national level

SKA Regional Centres

Discover the platform where the SKA science will be held

Spain joins the SKA Observatory to participate in the construction of the largest radioastronomy facility on the planet

05/04/2023 – The Spanish contribution to the project, which amounts to 41.4 million euros until 2030, will allow Spanish companies to participate in contracts of high technological value for the construction of this scientific infrastructure. The Institute de Astrophysics de Andalusia (IAA-CSIC) is responsible for the technical coordination of the Spanish participation in the project.

The Council of Ministers has approved this Tuesday the accession of Spain as a full member of the SKA Observatory (SKAO), an intergovernmental organisation that is building two complementary world-class radiotelescopes that will constitute one of the largest and most ambitious scientific infrastructures on the planet.

The initial construction phase of the SKAO telescopes, covering the period from 2021 to 2030, will cost a total of 2,022 million euros. Spain will contribute a total of 41.4 million euros to this phase of the project, of which 7.9 million euros have already been paid between 2021 and 2022 (5.1 million euros from the Recovery, Transformation and Resilience Plan). In 2023, €2.5 million from the national budget is foreseen.

The formalisation of Spain's incorporation into the SKAO as a full member now allows Spanish companies to participate in the contracts for the construction of the two radiotelescopes, thanks to the principle of return that applies in this international organisation.

The participation of Spanish companies in at least five SKAO construction contracts is currently guaranteed. Spain will be responsible, for example, for the manufacture of the sub-reflectors (secondary mirrors) for the parabolic antennas and the production of the equipment for the time synchronisation of the radiotelescope receivers.

Spanish industry will thus increase its expertise in the many cutting-edge technologies and big data techniques that are indispensable for the operation of the SKAO and that are being developed specifically for this unique project.

Moreover, thanks to this adhesion, Spanish scientists will be able to carry out pioneering radio astronomical observations at the front line, which are destined to lead to transformational discoveries in the study of the universe.

"We are really grateful for the support of our SKAO colleagues over the years. It has been amazing to have reached this point, and we have thoroughly enjoyed the journey to get there working together with the Ministry, the CDTI and the astronomy community. Now we can move forward with even more challenging and exciting activities as part of the SKAO", declare Lourdes Verdes-Montenegro (IAA-CSIC), coordinator of the Spanish participation in SKAO.

SKAO telescopes: two innovative and revolutionary radiotelescopes

During the current construction phase, the member states of this intergovernmental organisation will agree on the contributions and the construction schedule for the next phase of the project.

The SKAO radio telescopes will consist of two arrays of hundreds of thousands of antennas of different types. The first array, dedicated to low-frequency antennas, will be located in the Murchison district of Western Australia, while the second, dedicated to medium and high frequencies, will be distributed in the Karoo Desert of South Africa.

When completed, the SKAO telescopes will be a colossal observatory: they will have tens of times the sensitivity, and thousands of times the observing speed, of the best radio astronomical facilities available today, and their performance will not be surpassed by any other radiotelescope for decades.

In addition to the scientific and technological challenges it will overcome, SKAO also faces an organisational and management challenge that is being addressed through close intergovernmental cooperation on a global scale, cooperation that will serve as a model for other large multinational projects.

Spain's participation in the SKA

Spain has been working on the design and preparatory tasks of the project since the 1990s together with the states that have already ratified the agreement establishing the SKAO - Australia, China, Italy, the Netherlands, Portugal, the United Kingdom, South Africa and Switzerland - and those that are in the process of ratifying it - Germany, Canada, South Korea, France, India, Japan and Sweden.

The technical coordination of the Spanish participation in the project is the responsibility of the Institute of Astrophysics of Andalusia (IAA-CSIC), which belongs to the Consejo Superior de Investigaciones Científicas (Spanish National Research Council), an agency of the Spanish Ministry of Science and Innovation, whose main role is to organise the national scientific community for its participation in the project.

There are currently astrophysicists from Spain involved in almost all the SKA science working teams, as well as in other groups, such as the energy supply options or the coordination of the regional centres.

More information:
Primera luz del instrumento WEAVE

WEAVE first light

13/12/2022 – The Institute of Astrophysics of Andalusia (IAA-CSIC) participates in the WEAVE scientific team, whose first observations already show the high quality of the data that the spectrograph will provide

WEAVE, a powerful state-of-the-art multifibre spectrograph installed on the William Herschel Telescope (WHT) at the Roque de los Muchachos Observatory (La Palma, Canary Islands), has obtained its first light. The instrument, whose scientific team includes the Institute of Astrophysics of Andalusia (IAA-CSIC), has obtained spectra of two of the galaxies in Stephan's Quintet, showing that WEAVE is already generating high-quality data.

The first observations were carried out with the so-called large integral field unit (LIFU) fibre bundle, one of WEAVE's three fibre systems in which 547 closely packed optical fibres transmit light in a hexagonal area of the sky to the spectrograph, where it is analysed and recorded.

The LIFU was aimed at NGC 7318a and NGC 7318b, two galaxies at the heart of Stephan's Quintet, a group of interacting galaxies. The group, 280 million light-years from Earth in the constellation Pegasus, is undergoing a major galaxy collision and provides a natural laboratory for the consequences of galaxy collisions on galaxy evolution. The spectra obtained by WEAVE reveal the motions of stars and gas, the chemical composition of the stars, the temperatures and densities of the gas clouds, among others, and provide insight into how galaxy collisions transform the galaxies in the group.

"Our goal was to host a unique instrument that would enable cutting-edge astronomical research. We are now pleased to demonstrate that the LIFU part of WEAVE not only works, but also produces high-quality data", says Marc Balcells, director of the Isaac Newton Group of Telescopes (ING) to which the telescope hosting WEAVE belongs. For his part, WEAVE principal investigator Gavin Dalton highlights "the wealth of complexity revealed by a single detailed observation of this pair of nearby galaxies, which provides an excellent illustration of the power and flexibility of WEAVE".

Left: The William Herschel Telescope with WEAVE. The WEAVE positioner is housed in the 1.8-metre black box above the top-end ring. Optical fibres run along the telescope structure to the light-gray enclosure on the left which houses the WEAVE spectrograph. Credit: Sebastian Kramer. Right: The JWST image with the WEAVE LIFU pointing at Stephan's Quintet for the first-light observation. The LIFU gathers light from 547 points on the sky for analysis by the WEAVE spectrograph (each circle indicates an optical fibre 2.6 arcseconds in diameter). The observation provides physical information from each separate region of each galaxy as well as the space in between. Credits: NASA, ESA, CSA, STScI (background image); Aladin (overlay with fibres).

WEAVE, A STATE-OF-THE-ART SPECTROGRAPH

WEAVE is a multi-mode, multi-fibre spectrograph built by a consortium of European astronomical institutions, led by the UK's Science and Technology Facilities Council, to become the next generation spectroscopic facility for the WHT.

WEAVE uses optical fibres to collect light from celestial sources and transmits it to a two-armed spectrograph. The spectrograph separates the light into its different wavelengths, or colours, and records them on large-format CCD light detectors. WEAVE's versatility is one of its greatest strengths. While the LIFU mode houses 547 tightly packed fibres to image large areas of the sky, in MOS mode up to 960 individual fibres can be placed separately using two robots to capture the light from many hundreds of stars, galaxies or quasars. In mIFU mode, the fibres are organised into 20 units, each consisting of 37 fibres, which are used to study small and large targets, such as nebulae and distant galaxies.

WEAVE also provides velocities along the line of sight through the Doppler effect. Depending on the science target, there is a choice between two spectral resolution powers: at low resolution, the spectra distinguish velocity differences of about 5 kilometres per second, and at high resolution of 1.2 kilometres per second. Even at its lowest power of resolution, WEAVE records the line-of-sight velocities of stars with accuracies similar to those of the transverse velocities measured by ESA's Gaia satellite.

The advantage of the LIFU comes from the sheer amount of information contained in each observation. WEAVE produces spectra for each of 31,500 points or regions in and around the galaxies in two hours. The intensity of light from the fibres builds the image of the galaxies shown in the centre. The individual spectra (intensity at each wavelength; seven examples shown) provide a wealth of information about the physical conditions at each location. At the two galaxy nuclei (top-right) the spectra indicate moderately-old stars (one billion years) and no on-going star formation. The narrow, peaked spectra in the lower-right are typical of gas (hydrogen, oxygen, nitrogen, sulfur) heated to over 10,000 degrees by very young stars, whereas the broad, asymmetric peaks in the spectra shown on the left indicate turbulent shocks between gas clouds. WEAVE is particularly accurate at measuring wavelengths, or velocities. In the bottom-left panel (in red) obtained in the high spectral resolving power mode, velocity distributions as narrow as 12.8 km/s can be measured.

SCIENCE WITH WEAVE

Over the next five years, the ING will devote 70% of the time available at the WHT to eight large surveys with WEAVE, selected from those proposed by the astronomical communities of the partner countries. All of these surveys require spectra of up to millions of individual stars and galaxies, a goal made possible by WEAVE's ability to observe nearly a thousand objects at a time.

These surveys cover studies of stellar evolution, Milky Way science, galaxy evolution and cosmology. In synergy with the European Space Agency's Gaia satellite, WEAVE's MOS mode will be used to obtain spectra of several million stars in the disc and halo of our host galaxy, enabling the development of Milky Way archaeology. Nearby and distant galaxies, some detected by the LOFAR radiotelescope, will be studied for their growth history. And quasars will be used as beacons to map the spatial distribution and interaction of gas and galaxies when the universe was only about 20% of its present age.

The ING will also make 30% of the time available for projects competitively selected from among those proposed by astronomers in ING partner countries. These projects will take advantage of WEAVE's versatility to provide quick answers to immediate questions. There are also channels for programmes that jointly exploit WEAVE and the diverse capabilities of the telescopes of the Canary Islands Observatories such as the 10.4 metre Gran Telescopio Canarias.

WEAVE's construction has been funded by the Science and Technology Facilities Council (STFC, UK), the Netherlands Research School for Astronomy (NOVA, NL), the Dutch Science Foundation (NWO, NL), the Isaac Newton Group of Telescope (ING, UK/NL/ES), the Astrophysical Institute of the Canaries (IAC, ES), the Ministry of Economy and Competitiveness (MINECO, ES), the Ministry of Science and Innovation (MCI), the European Regional Development Fund (ERDF), the National Institute for Astrophysics (INAF, IT), the French National Centre for Scientific Research (CNRS, FR), Paris Observatory – University of Paris Science and Letters (FR), Besançon Observatory (FR), Region île de France (FR), Region Franche-Comté (FR), Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE, MX), National Council for Science and Technology (CONACYT, MX), Lund Observatory (SE), Uppsala University (SE), the Leibniz Institute AIP (DE), Max-Planck Institute for Astronomy (MPIA, DE), University of Pennsylvania (US), and Konkoly Observatory (HU).

Reference:

Reference: Shoko Jin et al., 2022, "The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation", MNRAS, accepted for publication. http://arxiv.org/abs/2212.03981

The Ministry of Science and Innovation has earmarked 2.5 million euros for the international Square Kilometre Array radiotelescope

25/05/2022  – The Square Kilometre Array (SKA) will enable progress to be made in the search for signs of life in the galaxy and in the observation of pulsars, black holes and gravitational waves. The technical coordination of the Spanish participation in the project is carried out by the Institute de Astrophysics of Andalusia (IAA-CSIC)

The Council of Ministers has approved this Tuesday the agreements by which the Ministry of Science and Innovation will allocate 2.5 million euros to the international radiotelescope Square Kilometre Array (SKA), of which 0.7 million euros will come from the European funds of the Recovery, Transformation and Resilience Plan and will be devoted to the development of its instrumentation.

The SKA radiotelescope will consist of hundreds of thousands of antennas of different types, spread over different locations, ranging from the Karoo Desert in South Africa, which will host the core of high and medium frequency dishes, to the Murchison Shire in Australia, which will host the low frequency antennas.

The SKA will be thousands of times faster at observing the sky than the best radioastronomy facilities today and will enable astronomers to make sky observations in great detail, exceeding the image resolution quality of the Hubble space telescope by several orders of magnitude.

In this way, the SKA radio telescope will make ground-breaking contributions to astrophysics, astrobiology, fundamental physics, geophysics and geodesy. Among other functionalities, it will enable progress to be made in the search for signs of life in the galaxy and the observation of pulsars, black holes and gravitational waves.

Spain's participation in SKA

Our country has been participating in SKA since 2011 and has expressed its interest in participating as a full partner in the SKA observatory which, under the legal form of an international body, will be the entity responsible for carrying out the construction of the world's largest radiotelescope.

Part of the amount approved on Tuesday will be recognised by SKA as part of the agreed contribution with which Spain will become a full member.

The technical coordination of the Spanish participation in the project is the responsibility of the Institute of Astrophysics of Andalusia (IAA-CSIC), which belongs to the Consejo Superior de Investigaciones Científicas (Spanish National Research Council), an agency of the Spanish Ministry of Science and Innovation, whose main role is to organise the national scientific community for its participation in the project.

At present, astrophysicists from Spain are involved in almost all the science working teams of the SKA, as well as in other groups, such as the energy supply options or the coordination of the regional centres. In addition, a representative of the CDTI has been appointed to encourage Spanish industrial participation in SKA developments.

More information:
Se obtienen las imágenes más detalladas de galaxias gracias a LOFAR, una red de 70.000 antenas

The most detailed images of galaxies are obtained thanks to LOFAR, a network of 70,000 antennas

27th August 2021 – The IAA-CSIC heads one of the eleven articles that make up a special issue of the journal Astronomy & Astrophysics on the results of LOFAR

After almost a decade of work, an international scientific team has published the most detailed images ever obtained of galaxies, which provide information about their internal workings in unprecedented detail. The images were created from data collected by LOFAR (Low Frequency Array), a network of more than 70,000 small antennas distributed throughout Europe. The images and the associated scientific results have been published in a special issue of the journal Astronomy & Astrophysics, one of them headed by the Institute of Astrophysics of Andalusia (IAA-CSIC).


A compilation of the science results. Credit from left to right starting at the top: N. Ramírez-Olivencia et al. [radio]; NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), edited by R. Cumming [optical], C. Groeneveld, R. Timmerman; LOFAR & Hubble Space Telescope,. Kukreti; LOFAR & Sloan Digital Sky Survey, A. Kappes, F. Sweijen; LOFAR & DESI Legacy Imaging Survey, S. Badole; NASA, ESA & L. Calcada, Graphics: W.L. Williams.

REVEALING THE HIDDEN UNIVERSE

The universe is flooded with electromagnetic radiation, of which visible light, the one captured by our eyes, is only a small portion. From short wavelengths, like gamma rays and X-rays, to long wavelengths, like radio, each part of the spectrum of light reveals something unique about the universe.

The LOFAR network captures images at radio frequencies that, unlike shorter wavelength sources such as visible light, are not blocked by clouds of dust and gas that can obscure astronomical objects. Thus, regions of the sky that appear dark to our eyes glow brightly in radio waves, and radio telescopes allow us to observe areas obscured by dust, such as regions where stars form or the heart of galaxies.

The new images obtained with the LOFAR network go beyond the limits of what we know about galaxies and supermassive black holes. The images reveal the inner workings of both nearby and distant galaxies with a resolution twenty times sharper than typical LOFAR images, made possible by the unique way the team made use of the network.

This image shows real radio galaxies from Morabito et al. (2021). The gif fades from the standard resolution to the high resolution, showing the detail we can see by using the new techniques. Credit: L.K. Morabito; LOFAR Surveys KSP

The more than 70,000 LOFAR antennas are spread across Europe, with the majority in the Netherlands. In standard operation, only signals from antennas located in the Netherlands are combined and a virtual telescope is created with a collecting surface of about 120 kilometers in diameter. By using signals from all European antennas, the team has increased the diameter of the "lens" to nearly two thousand kilometers, providing a twenty-fold increase in resolution.

Furthermore, unlike conventional array antennas that combine multiple signals in real time to produce images, LOFAR uses a new concept in which the signals collected by each antenna are digitized, transported to the central processor, and then combined to create an image. Each LOFAR image is the result of combining the signals of more than 70,000 antennas, which makes its extraordinary resolution possible.

A CHALLENGE OF A DECADE

Even before LOFAR began operating in 2012, the European scientific team began to work on the colossal challenge of combining the signals of more than 70,000 antennas located at a distance of up to two thousand kilometers. "Our goal is that our work allows the international scientific community to use the entire European network of LOFAR telescopes for their own science, and to create high-resolution images with relative ease without having to spend years acquiring the knowledge," says Leah Morabito, researcher at Durham University who has coordinated the work.

The LOFAR results provide new perspectives on known galaxies, show their structure in detail and allow the detection of jets and ejections of material emerging from supermassive black holes in galactic nuclei. Specifically, the Institute of Astrophysics of Andalusia (IAA-CSIC) has contributed with a study of the galaxy Arp-299, which stands out for its high rate of supernova production, or explosions produced by the death of stars with more than eight times the mass of the Sun.

"At the IAA we have been investigating this galaxy for years, which due to the interaction with the companion galaxy is generating outbreaks of star formation -says Naím Ramírez-Olivencia, IAA researcher who heads the study-. It is, therefore, a very interesting object because it allows us to study in almost real time how stars are born, die and interact with the surrounding environment ".

"Our work has been chosen for this compendium of articles related to LOFAR because it is one of the first to show the capabilities of this wonderful instrument for low radio frequencies. Thanks to LOFAR we have managed to detect, for example, a gas outflow emanating from one of the nuclei of the Arp299 galaxy system, and with a scale comparable to the galaxy from which it emanates. Such a result has only been possible thanks to the great sensitivity and resolution of LOFAR, which in its current configuration constitutes a milestone in the astronomy and opens up a world of new discoveries", concludes the researcher.

Reference:
MeerKAT descubre un grupo de galaxias escondido en una región muy estudiada

MeerKAT discovers a group of galaxies hidden in a well-studied region

15th July 2021 – Its abundance in neutral hydrogen suggests that it is a group of galaxies in the process of formation

Most galaxies with intense star formation are contained within a cloud of cold neutral hydrogen, which acts as the fuel from which new stars will form. It is a diffuse, extremely faint gas that can only be detected at radio wavelengths and extends beyond the visible region of the galaxy. The observation of this gas allows us to understand the evolutionary processes that take place in galaxies, and a scientific team with the participation of the Institute of Astrophysics of Andalusia (IAA-CSIC) has found, with the MeerKAT radiotelescope, an ideal object of study: the group of galaxies richest in neutral hydrogen known.

"The distribution of neutral hydrogen in these galaxies has revealed interesting perturbed morphologies that suggest that the galaxies in the group influence each other. For example, we found a pair of interacting galaxies that will potentially merge to form a new galaxy with a completely transformed appearance", says Shilpa Ranchod, a researcher at the University of Pretoria who leads the study.

Image of the galaxy cluster with three-color optical images of each member galaxy using data from the Hyper-Suprime camera on the Subaru telescope. The red outline indicates the extent of neutral hydrogen around each galaxy. Credit: Shilpa Ranchod / Project MIGHTEE / HSC.

The discovery is part of the MIGHTEE (MeerKAT International Gigahertz Tiered Extragalactic Exploration) legacy project, one of the major surveys being developed with the MeerKAT telescope (South Africa) and involving an international science team. MeerKAT is the South African precursor to the Square Kilometre Array (SKA), which will be the largest scientific infrastructure on the planet, and aims to answer fundamental questions about the formation and evolution of galaxies. Its exceptional sensitivity provides a better understanding of the drivers of galaxy evolution.

This new group of galaxies lies in an area of the sky that has been studied in depth with other radiotelescopes, but only with MeerKAT has it been possible to observe the structure of the group so clearly. The environment of galaxies greatly affects how galaxies grow and evolve, and observations of neutral hydrogen with MeerKAT offer a new window into these structures.

"This is just a preview of what the MeeeKAT legacy project MIGHTEE will show us, and of the discoveries we will make with the SKA. This is a case of special interest for the line of research I coordinate at the IAA: unlike the dense groups of galaxies with a high deficiency in atomic gas with which we usually work and which, as we proposed, would be more evolved, in this case, a lot of gas has been detected, which suggests that we are dealing with a group in an early evolutionary phase, that is, a group in formation", says Lourdes Verdes-Montenegro, a researcher at the IAA who is participating in the study and coordinating the Spanish participation in the SKA.

This discovery will help to lay new foundations for understanding how galaxies assemble into groups and transform themselves through interaction with their environment. MeerKAT is an important step in the direction of the SKA, providing insight into future scientific projects and examples of how to overcome the many technical challenges involved in its full scientific potential.

Reference:

Reference: S. Ranchod et al. "MIGHTEE-HI: Discovery of an HI-rich galaxy group at z = 0.044 with MeerKAT". Monthly Notices of the Royal Astronomical Society, July 2021. https://arxiv.org/abs/2107.01237

Nace SKAO, el mayor observatorio de radioastronomía del mundo

The largest radioastronomy observatory in the world, SKAO, is born

4th February 2021 –Spain is among the participating countries in the SKA Observatory (SKAO), an intergovernmental organization that will open a new era in radioastronomy. The Minister of Science, Pedro Duque, has highlighted that it is a milestone that will revolutionize astronomy and other scientific and technological fields. Spanish participation in SKA is led by the Institute of Astrophysics of Andalusia (IAA-CSIC)

Spain has participated this Thursday in the Council for the constitution of a new International Organization, which is the second dedicated to astronomy after the European Southern Observatory (ESO). The international radioastronomy observatory SKAO, which stands for Square Kilometer Array Observatory, is a new intergovernmental body that will be dedicated to the construction and operation, in South Africa and Australia, of the two largest and most complex radio telescopes conceived to date to study key questions about the universe.

During the last two decades, Spain has played an active role in the design phase of the Observatory with an important participation of the national scientific community in defining SKA science, an effort that has been included in a white paper on related scientific aspects with the new infrastructure published in 2015, and in which 120 scientists from more than 40 national institutions participated. In addition, our industry has played an important role, contributing to most of the infrastructure design consortia. All this estimated at approximately four million euros.

Spain's commitment for the construction of the Observatory is 41.4 million euros over the next ten years. Construction of the telescopes is expected to take eight years, with the first scientific results available in the middle of this decade. In addition to the advances that SKAO will bring to astronomy, its creation will be an important boost in many other areas, such as digital and communication technologies, supercomputing or big data, and will become a motor for the ecological transition and open science.

The Minister of Science and Innovation, Pedro Duque, has celebrated the constitution of the new observatory, underlining the involvement of Spain in the exhaustive study and design process. Likewise, he has highlighted that this is the beginning of a new stage for radioastronomy thanks to the construction of one of the most ambitious telescopes in the history of astronomy.

Artistic representation of SKA-Mid and SKA-Low. Credits: SKA Observatory

In addition, the minister stressed that Spain will actively participate in the new observatory, counting on a strategically positioned scientific community and a well-prepared industry.

Spanish participation in SKA is led by the Institute of Astrophysics of Andalusia (IAA-CSIC). Lourdes Verdes-Montenegro, IAA researcher and coordinator of Spanish participation in the SKA, celebrates this milestone: "Today is an exciting day, since for years the Spanish scientific and engineering community has been contributing to our participation in its first Council, which makes us witnesses of a milestone for the recent history of astronomy and positions us in the face of the key scientific projects of the SKA. SKAO shows a strong commitment to the Green Deal and Open Science, as well as to the promoting equality and inclusiveness, and brings us one step closer, through international cooperation, to the achievement of the United Nations Sustainable Development Goals". The SKA project and the development of the prototype of the "SKA Regional Center (SRC)" have the support of the management and the Severo Ochoa program of the IAA, of whose strategic plan they form a fundamental part.

MHONGOOSE comienza a estudiar el débil gas atómico que rodea a las galaxias, clave en su evolución

MHONGOOSE begins to study the weak atomic gas that surrounds galaxies, key in their evolution

30th November 2020 – MHONGOOSE, a legacy project of the MeerKAT radiointerferometer, South African precursor to the Square Kilometer Array, produces its first results. They have been obtained in its preparatory phase, thus anticipating the window that will open to the understanding of the formation and evolution of galaxies.

MHONGOOSE (MeerKAT Observations of Nearby Galactic Objects - Observing Southern Emitters) is a legacy project to study the distribution of atomic hydrogen (HI) in a selection of nearby galaxies using the MeerKAT radiotelescope (South Africa). As part of its testing phase, it has already provided its first scientific results. This first work, published in the journal Astronomy and Astrophysics, provides new findings on the distribution of gas around the galaxy ESO 302-G014 and shows the potential of the project.

Aerial view of the MeerKAT interferometer under construction. Credit: SARAO.

MHONGOOSE will study how galaxies capture gas from their surroundings and the relationship between gas and star formation. To do so, the distribution of atomic hydrogen (HI) will be studied in a sample of 30 nearby galaxies, located less than 65 million light years from our Milky Way. The galaxies have been selected to cover all inclinations, from edge-on galaxies to front-on galaxies, and cover a very wide range in mass and luminosity.

This variety in the sample allows addressing various questions about the transformation and evolution processes of galaxies in the nearby universe. The project has obtained 1650 hours of observation in the MeerKAT radiointerferometer, a precursor of SKA (Square Kilometer Array) consisting of 64 antennas located in the Karoo desert, in South Africa. MeerKAT is, until SKA is built, the most efficient telescope to obtain the type of data that is needed in MHONGOOSE.

Gas Clouds Surrounding a Dwarf Galaxy in the Southern Hemisphere

The first results that MHONGOOSE provides correspond to the galaxy called ESO 302-G014, a nearby gas-rich dwarf galaxy. The international scientific team responsible for the work, which has the participation of the IAA-CSIC, has used observations made with MeerKAT, together with complementary data in other wavelengths, to study its evolutionary history. They have found that the galaxy has a thin, asymmetrical outer disk, as well as a tidal tail of atomic hydrogen and an isolated cloud about 6,500 light-years from this galaxy.

These structures, which had not been previously detected, seem to indicate that the galaxy underwent an interaction with another low mass galaxy. Lourdes Verdes-Montenegro, IAA-CSIC scientific researcher and the only Spanish member of the MHONGOOSE team, highlights that “the detected signs of a possible interaction with some low-mass galaxy companion are also supported by the presence of significant amounts of molecular gas detected by the ALMA interferometer and the existence of prominent star clusters, suggesting a recently induced star formation”.

Emission of atomic hydrogen associated with the galaxy ESO 302-G014, represented in three dimensions, where the structure that could correspond to a possible interaction with a low-mass companion is shown. Credit: Lourdes Verdes-Montenegro (IAA-CSIC).

"The deep images from the Dark Energy Camera Legacy Survey show a faint and diffuse object near the end of the filament, whose radius, brightness and color are compatible with that of a dwarf galaxy at a distance similar to that of ESO 302-G014", points out Javier Román, a researcher at the IAA-CSIC expert in deep optical images who participates in the work.
These results are, according to Lourdes Verdes-Montenegro, “just a small preview of things to come”, as they have been obtained with preliminary observations, and she is confident that “in-depth observations of the objects in the MHONGOOSE sample will offer a glimpse of the fate of atomic gas when transferring from the intergalactic medium to galaxies”. In the medium-term future, these types of observations will be able to be extended to more distant galaxies thanks to SKA, which will be the largest radiotelescope in the world, and in which MeerKAT will be integrated to form a single interferometer.

Reference:

de Blok et al. “MeerKAT HI commissioning observations of MHONGOOSE galaxy ESO 302-G014”. Astronomy & Astrophysics 643, A147 (2020) https://doi.org/10.1051/0004-6361/202038894

ESCAPE: Ciencia Abierta y nuevos caminos en el conocimiento del cosmos a todas las escalas

El proyecto ESCAPE engloba algunas de las mayores infraestructuras científicas mundiales en astronomía y física de partículas, para el desarrollo de una única plataforma digital para el uso abierto de datos.

Financiado con dieciséis millones de euros por la Unión Europea a través del programa Horizonte 2020, supone un esfuerzo único hacia la Ciencia Abierta.

El Instituto de Astrofísica de Andalucía (IAA-CSIC) contribuye al desarrollo de la “Plataforma de análisis científico”, por su papel fundamental en que la infraestructura astronómica Square Kilometre Array (SKA), sea un referente en metodología científica.

SKA fue identificado como Proyecto de Referencia en el Foro Estratégico Europeo sobre Infraestructuras de Investigación (ESFRI, por sus siglas en inglés) en 2016. Esta figura muestra las infraestructuras científicas ESFRI en astronomía, astropartículas y física de partículas que conforman el grupo de ESCAPE. En sentido de las agujas del reloj, de arriba abajo: ELT, CTA, FAIR, KM3NeT, EST, HL-LHC, SKA.

Las grandes infraestructuras europeas de astrofísica y de física de partículas se unen en el proyecto ESCAPE, que creará un Observatorio Virtual extendido a los dominios de la física solar, la física de partículas y las astropartículas. El proyecto responde así a un reto internacional que combina la gestión de las enormes cantidades de datos que producen proyectos como el LHC (Gran Colisionador de Hadrones) o el radiotelescopio SKA (Square Kilometre Array) con su disponibilidad en abierto para que la Nube de Ciencia Europea Abierta (EOSC) se haga realidad: una única plataforma que permita acceder, utilizar y analizar todos los datos científicos disponibles.

“El nombre ESCAPE fue elegido porque nuestra colaboración pretende dejar que los datos salgan de su confinamiento. Por primera vez, varias de las mayores instalaciones europeas en física y astronomía unen sus fuerzas para hacer que sus datos y software estén abiertos e interoperables. Es un gran hito para la investigación europea”, apunta Giovanni Lamanna, investigador del Laboratorio de Annecy de Física de Partículas (LAPP) e investigador principal del proyecto ESCAPE.

“Estamos viviendo un momento crucial, con el desarrollo de instrumentos cada vez más complejos, que producen enormes cantidades de datos y que requieren de software cada vez más especializado. En nuestro esfuerzo por ser mas eficientes en extraer conocimiento de dichos datos, corremos el riesgo de olvidarnos de la reproducibilidad de los resultados. Solo si somos capaces de cambiar la forma en que trabajamos los científicos podremos mejorar la calidad de la Ciencia, y el proyecto ESCAPE busca ofrecer soluciones, herramientas y servicios para ello”, señala Lourdes Verdes-Montenegro, investigadora del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en el proyecto y que lidera la participación de España en el proyecto SKA.

El cosmos en abierto

Se espera un aluvión de datos en los próximos años gracias a las infraestructuras priorizadas en la hoja de ruta del Foro Europeo de Estrategia de Infraestructuras de Investigación (ESFRI, del inglés) entre las que destaca SKA, que constituirá la mayor infraestructura científica del mundo, el Cherenkov Telescope Array (CTA), el Telescopio Solar Europeo (EST), o el Telescopio Extremadamente Grande (ELT) y en misiones de la Agencia Espacial Europea como PLATO, que caracterizará los planetas orbitando en estrellas de nuestro entorno. En todas ellas participa el IAA, siendo objeto de su contribución a ESCAPE tanto SKA como PLATO.

La financiación asignada de dieciséis millones de euros contribuirá a que las principales infraestructuras de investigación europeas trabajen juntas para encontrar soluciones comunes a sus desafíos a nivel de datos, interoperabilidad y acceso a los mismos, así como para acentuar la apertura de la investigación fundamental a toda la comunidad internacional, desde profesionales hasta el público general.

La astronomía multimensaje (observaciones coordinadas de señales astrofísicas dispares) y la física de partículas con aceleradores son dos pilares del proyecto ESCAPE. A través de la combinación de investigación experimental de los dos extremos, desde las estructuras a gran escala en el universo observable hasta las partículas fundamentales, los proyectos relacionados con la astronomía y las instalaciones de física de partículas abrirán juntas nuevos caminos en el conocimiento del universo.

ESCAPE extenderá el concepto de observatorio astronómico virtual a la física solar, la física de partículas y las astropartículas. El proyecto explotará la dilatada experiencia de la comunidad de física de partículas y astrofísica en cálculo a gran escala y gestión de datos, construyendo nuevas herramientas para gestionar la avalancha de datos que producirá la nueva generación de instalaciones, creando una base de datos gigante con un tamaño superior a varios exabytes y federando centros de datos nacionales y regionales.

Se construirá una nueva plataforma de análisis científico, de manera que los usuarios de la Nube Europea de Ciencia Abierta puedan seleccionar software existente y utilizar el suyo propio, aprovechándose del potencial de la computación de alto rendimiento. Finalmente, ESCAPE creará un nuevo repositorio de software abierto para maximizar la reutilización y el desarrollo conjunto de software, identificar estándares abiertos para publicación de software e investigar herramientas de extracción de datos y nuevas técnicas de análisis. El plan de trabajo de ESCAPE hará también énfasis en la formación: el objetivo es atraer y educar a jóvenes científicos en ciencia abierta y administración de datos, utilizando las últimas herramientas y metodologías.

Participación del IAA-CSIC

El paquete de trabajo en el que participa el Instituto de Astrofísica de Andalucía (IAA-CSIC) “, se centra en la definición e implementación de la “Plataforma de análisis de ciencia ESFRI”, que servirá para el análisis de datos de acceso abierto en el entorno de la Nube Europea de Ciencia Abierta. “El IAA-CSIC contribuirá a crear una plataforma que dé apoyo a los investigadores en la creación de métodos reproducibles, mejorando así la manera de compartir, no solo los datos, sino también los métodos científicos -explica Lourdes Verdes-Montengro (IAA-CSIC), coordinadora de la participación de España en SKA -. Es un momento clave, al coincidir con el inicio de la creación de un centro regional piloto para SKA en el IAA, asociado a su acreditación como Centro de Excelencia Severo Ochoa. Como coordinadora del desarrollo considero fundamental seguir los principios de Ciencia Abierta, y por tanto la transversalidad con otras líneas desarrolladas en el centro, como la participación en la misión espacial PLATO.

Forman parte de este consorcio proyectos ESFRI como el Cherenkov Telescope Array (CTA), el Extremely Large Telescope (ELT), el Telescopio Solar Europeo (EST), el Facility for Antiproton and Ion Research in Europe (FAIR), el High Luminosity-Large Hadron Collider (HL-LHC), el Cubic-kilometre-sized Neutrino Telescope (KM3NeT) y el Square Kilometre Array (SKA). Dos organizaciones paneuropeas, la European Organization for Nuclear Research (CERN) y el European Southern Observatory (ESO), también son miembros de la agrupación ESCAPE. El European Virtual Observatory (EURO-VO) también está comprometido de manera activa con el proyecto. ESCAPE engloba otros observatorios astronómicos de primera línea mundial, tales como los operados por ESO (APEX ALMA, los observatorios de Paranal y La Silla), infraestructuras de investigación tales como el European Gravitational-Wave Observatory (EGO-Virgo) y el Joint Institute for VLBI ERIC (JIV-ERIC).

Lista completa de miembros de ESCAPE

(señalados en negrita los miembros españoles del proyecto)

Centre National de la Recherche Scientifique (CNRS), European Organization for Nuclear Research (CERN), ASTRON, CWI and NIKHEF institutes of the Stichting Nederlandse Wetenschappelijk Onderzoek Instituten (NWO-I), Friedrich-Alexander-Universität Erlangen- Nürnberg (FAU), European Southern Observatory (ESO), The Square Kilometre Array Organization (SKA), Facility for Antiproton and Ion Research in Europe (FAIR GMBH), Koninklijke Sterrenwacht van Belgie (ORB), Università degli Studi di Roma Torvergata (UNITOV), Leibniz-Institut für Astrophysik Potsdam (AIP), Istituto Nazionale d’Astrofisica (INAF), Instituto de Fisica de Altas Energias (IFAE), Stiftung Deutsches Elektronen-Synchrotron (DESY), Universidad Complutense de Madrid (UCM), Max-Planck-Gesellschaft zur Förderung der Wissenschaften EV (MPG), Stiftung Kiepenheuer-Institut für Sonnenphysik (KIS), Ruprecht-Karls-Universität Heidelberg (UHEI), GSI Helmholtzzentrum für Schwerionenforschung Gmbh (GSI), The University of Edinburgh (UEDIN), Istituto Nazionale di Fisica Nucleare (INFN), Joint Institute for Very Long Baseline Interferometry, a European Research Infrastructure Consortium (JIV-ERIC), European Gravitational Observatory / Osservatorio Gravitazionale Europeo (EGO), The Open University (OU), Agencia Estatal Consejo Superior de Investigaciones Cientificas (CSIC), Instituto Nacional de Tecnica Aeroespacial Esteban Terradas (INTA), HITS GGMBH (HITS), Cherenkov Telescope Array Observatory GGMBH (CTAO GGMBH), Rijksuniversiteit Groningen (RUG), Surfsara BV, TRUST-IT Services (TRUST-IT), OROBIX Srl (OROBIX).

Sobre SKA

El proyecto Square Kilometre Array (SKA) es un esfuerzo internacional para construir el radiotelescopio más grande del mundo, liderado por la Organización de SKA, situada en el Observatorio de Jodrell Bank, cerca de Manchester. El SKA llevará a cabo ciencia transformacional para mejorar nuestro entendimiento del Universo y las leyes fundamentales de la física, observando el cielo con un detalle sin precedente y trazando un mapa celeste cientos de veces más rápido que cualquier instalación actual.

El SKA no es un único telescopio, sino una colección de telescopios, llamados array (conjunto), distribuidos a lo largo de grandes distancias. El SKA se construirá en Australia y Sudáfrica, expandiéndose después por ambos países y por los continentes de África y Oceanía.

Con el apoyo de 12 países (Australia, Canadá China, España, Francia, India, Italia, Nueva Zelanda, Sudáfrica, Suecia, Países Bajos y Reino Unido), la Organización de SKA ha reunido en el diseño y desarrollo del telescopio a algunos de los mejores científicos, ingenieros y responsables políticos del mundo y a más de 100 empresas e instituciones de investigación.

España se convierte en el undécimo país miembro de SKA

España se convierte en el undécimo país miembro de SKA

Sede de SKA, 19 de junio de 2018 – España se ha convertido en el undécimo miembro de la Organización del Square Kilometre Array (SKA). Culminan así varios años de trabajo de la comunidad científica española, encaminado a participar en el desarrollo y explotación de un instrumento que protagonizará los grandes hallazgos de las próximas décadas.

El ministro de Ciencia, Innovación y Universidades, Pedro Duque, ha asegurado que la adhesión de España a la organización SKA «es una inversión estratégica para nuestro país, ya que el Observatorio SKA será una de las infraestructuras internacionales de investigación más importantes de Europa en los próximos años». El ministro ha explicado que la pertenencia a la organización internacional permitirá explorar la forma de «participar en la futura construcción del Observatorio SKA en las mejores condiciones, garantizando que los científicos españoles tengan acceso a las mejores infraestructuras de radioastronomía a gran escala y que nuestra industria de vanguardia esté bien posicionada para competir en los contratos de desarrollo de tecnologías y de construcción».

Catherine Cesarsky, presidenta del Consejo Directivo de SKA, ha asegurado que la organización está «encantada de dar la bienvenida a España. Su participación en los últimos años ha sido sustancial, por lo que la adhesión parecía un paso natural. Esperamos trabajar con España aún más de cerca en los próximos años, a medida que avancemos en la construcción y operación de los telescopios».

La participación española en SKA ha estado liderada por el Instituto de Astrofísica de Andalucía (IAA) de la Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC). Lourdes Verdes-Montenegro, investigadora del IAA, ha celebrado la noticia y ha explicado que durante muchos años España «ha tenido una gran participación en SKA, tanto desde el punto de vista científico como de la industria. El SKA revolucionará nuestra forma de ver el Universo y España formará parte de este reto».

España ha estado participando en actividades relacionadas con SKA desde sus comienzos y muchos científicos e ingenieros han participado en diferentes grupos de trabajo de ciencia e ingeniería de SKA desde 2012, fecha en que se creó la organización SKA para dirigir el proyecto durante la fase de diseño del telescopio.

En la actualidad, 26 investigadores españoles forman parte de 9 de los 11 grupos de trabajo de ciencia de SKA. Y en 2015, 120 investigadores españoles de 40 instituciones participaron en la redacción del Libro Blanco español de SKA.

Desde el punto de vista de la ingeniería, 11 centros de investigación españoles y 12 empresas contribuyen al diseño de SKA, participando en 8 consorcios internacionales (incluidos Dishes, Signal & Data Transport, Central Signal Processor, Science Data Processor, Telescope Manager, Infrastructure y Phased Array Feeds).

Mapa que muestra los 11 países miembros del proyecto SKA.

 

Sobre SKA

El proyecto Square Kilometre Array (SKA) es un esfuerzo internacional para construir el radiotelescopio más grande del mundo, liderado por la SKA Organisation, situada en el Observatorio de Jodrell Bank, cerca de Manchester. El SKA llevará a cabo ciencia transformacional para mejorar nuestro entendimiento del Universo y las leyes fundamentales de la física, observando el cielo con un detalle sin precedente y trazando un mapa celeste cientos de veces más rápido que cualquier instalación actual.

El SKA no es un único telescopio, sino una colección de telescopios o instrumentos, llamados array (conjunto), distribuidos a lo largo de grandes distancias. El SKA se construirá en dos fases. La Fase 1 (SKA1) en Sudáfrica y Australia y la Fase 2 (SKA2), en la que se expandirá a otros países del continente africano, así como la expansión de la componente australiana.

Con el apoyo de 11 países miembros (Australia, Canadá China, España, India, Italia, Nueva Zelanda, Sudáfrica, Suecia, Países Bajos y Reino Unido), la SKA Organisation ha reunido en el diseño y desarrollo del telescopio a algunos de los mejores científicos, ingenieros responsables políticos del mundo y a más de 100 empresas e instituciones de investigación a lo largo de 20 países. El comienzo de la construcción de SKA está previsto para 2021, esperando las primeras observaciones a mediados de la década de 2020.

Noticia original: https://www.skatelescope.org/news/spain-joins-skao/

El SKA o… qué tienen que ver Einstein, Jodie Foster y 300 ingenieros

El SKA o… qué tienen que ver Einstein, Jodie Foster y 300 ingenieros

El sábado 14 de abril, a las 12:00h, en el Centro de Ciencia PRINCIPIA de Málaga, Lourdes Verdes-Montenegro explicará de nuevo la curiosa relación entre Einstein, Jodie Foster y 300 ingenieros.

El Square Kilometre Array será un radiointerferómetro compuesto por cientos de miles de antenas distribuidas en Australia y África, que sumarán una superficie equivalente de un kilómetro cuadrado (de ahí su nombre: Square Kilometre Array, SKA). Sus características y precisión permitirán grandes avances en la astrofísica, la astrobiología y la física fundamental, áreas de gran interés en los centros de astrofísica de España.

Imagen de http://www.principia-malaga.com

En esta charla, Lourdes Verdes-Montenegro nos contará cuáles son las preguntas clave que requieren de un radiotelescopio como SKA para ser respondidas, de los retos científicos a los que se enfrenta la astronomía hoy en día, del impacto social que supondrá el desarrollo de este radiotelescopio así como de los pasos que se están llevando a cabo para su diseño y posterior construcción.

De estas cosas, y de que científicos, ingenieros y divulgadores de la ciencia españoles no se han quedado esperando a que los vientos sean favorables para involucrarse en el primer proyecto a escala terrícola de la historia, se hablará mañana en la Sala Faraday del Centro de Ciencia PRINCIPIA.

EN